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A B S T R A C T   

Background: Although risk stratification of patients with acute decompensated heart failure (HF) is important, it 
is unknown whether machine learning (ML) or conventional statistical models are optimal. We developed ML 
algorithms to predict 7-day and 30-day mortality in patients with acute HF and compared these with an existing 
logistic regression model at the same timepoints. 
Methods: Patients presenting to one of 86 hospitals, who were either admitted to hospital or discharged home 
directly from the emergency department, were randomly selected using stratified random sampling. ML ap-
proaches, including neural networks, random forest, XGBoost, and the Lasso, were compared with a validated 
logistic regression model for discrimination and calibration. 
Results: Among 12,608 patients in our analysis, lasso regression (c-statistic 0.774; 95% CI, 0.743, 0.806) per-
formed better than other ML models for 7-day mortality but did not outperform the baseline logistic regression 
model (0.794; 95% CI, 0.789, 0.800). For 30-day mortality, XGBoost performed better than other ML models (c- 
statistic 0.759; 95% CI; 0.740, 0.779), but was not significantly better than logistic regression (c-statistic 0.755; 
95% CI, 0.750, 0.762). Logistic regression demonstrated better calibration at 7 days (calibration-in-the-large 
0.017; 95% CI, − 0.657, 0.692, and calibration slope 0.954; 95% CI, 0.769, 1.139), and at 30 days (− 0.026; 95% 
CI, − 0.374, 0.322, and 0.964; 95% CI, 0.831, 1.098), and best Brier scores, compared to ML approaches. 
Conclusions: Logistic regression was comparable to ML in discrimination, but was superior to ML algorithms in 
calibration overall. ML algorithms for prognosis should routinely report calibration metrics in addition to 
discrimination.   

1. Background 

Heart failure (HF) is a global public health issue which affects 
approximately 26 million people globally [1]. Many patients present to 
the emergency department acutely, where the initial diagnosis is often 
made, as the condition is frequently undiagnosed in the ambulatory 
office setting [2]. Acute HF is a syndrome defined by new or worsening 
signs and symptoms of HF, which are due to systemic congestion, and 

often leads to hospitalization [3]. However, once hospitalized, the 30- 
day mortality rate of patients with HF is as high as 10.6% at a popula-
tion level, portending the poor prognosis of HF and underscoring the 
need for improved ways to estimate prognosis using risk stratification 
[4,5]. In earlier work, our group derived the Emergency Heart failure 
Mortality Risk Grade (EHMRG) 7-day and 30-day risk prediction algo-
rithms, a multivariable risk scoring formula developed using multiple 
logistic regression [6–8]. Using only 10 predictor variables, the model 
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can predict mortality outcomes at two time points, and identifies those 
who are low risk, with 0% mortality at 7- and 30-days in those in the 
lowest risk quintile [9]. 

While other predictive models have been derived for use in patients 
with HF in the emergent setting, few have been prospectively validated, 
and none are used routinely in clinical practice [10]. Only the EHMRG 
model has been compared with and found to be superior to physician 
estimated risk, with c-indices of 0.71 vs. 0.81 for prediction of 7-day 
mortality in favor of the mathematical model [9,11]. The EHMRG 7- 
and 30-day models are currently being evaluated in a randomized 
controlled trial, the Comparison of Outcomes and Access to Care for 
Heart failure (COACH) trial, whereas no other model has been tested as a 
randomized intervention [11]. There has been great interest in machine 
learning (ML) as an alternative analytic approach to development of risk 
prediction models. Harrell defines ML as ‘an algorithmic procedure for 
prediction or classification that tends to be empirical, nonparametric, 
flexible, and does not capitalize on additivity of predictors’. [12] ML is 
considered to be advantageous because it does not make assumptions 
about data distribution, handles complex relationships between data 
with varying degrees of correlation, and is agnostic to a priori assump-
tions about the importance of specific variables. ML may also be useful 
when there are many variables to consider, when inputs consist of 
complex data or images, when there are potentially previously unrec-
ognized interactions, and when the signal-to-noise ratio is high. 

It is unknown whether ML approaches are superior to conventional 
statistical models (CSM). The advantages of CSM includes the ability to 
infer the relationship between the covariates and outcome and the 
interpretability of the associations, which are more difficult to discern 
using the so-called ‘black box’ of ML. In two prior systematic reviews 
comparing ML and CSM, we found that ML had, on average, slightly 
higher c-statistics than CSM, however few studies compared ML to 
extensively validated risk algorithms that were derived using rigorous 
statistical and methodological approaches [13,14]. Therefore, in this 
study, we developed ML algorithms for 7-day and 30-day mortality 
among patients with acute HF and compared these with CSM-derived 
EHMRG models. 

2. Methods 

Study setting and data sources. We studied patients ≥18 years 
(Ontario, Canada) who presented to an emergency department with 
acute HF, randomly selected from 86 hospitals using stratified random 
sampling from the Emergency Heart Failure Mortality Risk Grade 
(EHMRG) and Enhanced Feedback for Effective Cardiac Treatment 
(EFFECT) Phase II chart review cohorts as detailed previously [6,15]. To 
be eligible for the EHMRG and EFFECT studies, patients were required to 
have a clinical diagnosis of HF by meeting the Framingham criteria, and 
most responsible diagnosis of HF in the discharge abstract from hospital 
(Canadian Institute for Health Information Discharge Abstract Database 
and the National Ambulatory Care Reporting System) based on the to-
tality of information available during the hospital stay. The EHMRG 
cohort was comprised of patients presenting to the ED with HF and 
discharged home, while EFFECT II was comprised of hospitalized pa-
tients with HF. Those who were palliative prior to ED arrival, dialysis- 
dependent, and transfers from other facilities were excluded from both 
cohorts. In this study, we combined EHMRG and EFFECT II datasets, and 
considered 111 candidate variables in the following groupings: de-
mographic, presentation details, vital signs, laboratory results, medical 
history, and pre-admission medication (see Supplementary table 1). We 
linked these cohorts to clinical administrative datasets using unique 
encoded identifiers to obtain information on hospital visits in the pre-
vious 2 years to supplement the clinical variables that were used to 
develop the original EHMRG risk model. These additional variables, 
which were indicative of past hospital visits included: the number of 
previous hospital admissions, number of previous ED visits leading to or 
not leading to hospitalization, total number of previous ED visits, time 

since first ED visit leading to hospitalization, time since first ED or most 
recent ED visit that did or did not lead to hospitalization, time since first 
hospitalization or most recent hospitalization (see Supplementary table 
1). These datasets were linked using unique encoded identifiers and 
analyzed at ICES. 

Analysis. We compared the following methods: a) logistic regression 
using the 10 EHMRG risk model covariates, b) neural networks, c) 
random forest, d) XGBoost, and e) Lasso logistic regressions. Methods 
(b) to (e) considered all 111 candidate variables in the training set. The 
EHMRG model covariates are available on the web (https://ehmrg.ices. 
on.ca) and both 7-day and 30-day models have been previously pub-
lished [6,7]. We provide a brief explanation of these methods. The lasso 
is a form of logistic regression such that the coefficients are estimated 
using a cost function and where some of the coefficients will be set to 
zero, resulting in a more parsimonious model than conventional logistic 
regression. This helps to improve interpretability, removes variables 
that are only weakly associated with the outcome, thereby performing 
variable selection. Random forests and XGBoost are based on decision 
trees [16]. Decision trees group patients based on a series of binary 
splits. The split chosen at each stage is the one that best separates the 
patients by the outcome. Random forests fit a large sequence of decision 
trees, each of which is trained on a different bootstrap sample from the 
data. At each split, the tree can only choose from a random subset of the 
variables. The random forest’s prediction is the average of predictions 
across all the trees [16]. XGBoost is similar to random forests, but trees 
are fit sequentially, such that each tree is grown to minimize the errors 
of previous trees [17]. Neural networks are machine learning algorithms 
based on the architecture of the human brain, with layers of neurons 
connected by edges. As the neural network is exposed to training data, it 
refines the connections between neurons to reduce prediction error 
[18]. We included neural networks in order to consider a commonly- 
used deep learning algorithm that was not tree-based. These methods 
were chosen because they are common in the cardiology literature as 
demonstrated in two prior systematic reviews comparing machine 
learning and conventional statistical analysis [13,14]. Interested readers 
are referred to recently published reviews and applications of machine 
learning in medicine and clinical investigation for further details 
[19–22]. 

We used recursive feature elimination to select features for XGBoost 
and random forest models [23]. For neural networks, feature selection 
involved combining the feature importance results from an elastic net 
model and a random forest model. For each algorithm, we trained 
separate models for 7-day and 30-day mortality. To ensure that the ML 
models were derived and tested using a similar split to that employed in 
the derivation of the original EHMRG models, we randomly divided the 
combined EHMRG/EFFECT II sample in a 2:1 ratio into derivation and 
test samples [6], as has been suggested previously [24]. The ML deri-
vation sample was split 80–20% into training and validation sets, which 
is a standard approach to model-building using ML [21]. We calculated 
the anticipated precision of the estimated c-statistic resulting from our 
derivation-test sample division using previously-published methods 
[25], given an anticipated event rate of 2% for 7-day mortality and 8% 
for 30-day mortality, and an anticipated c-statistic of 0.75. Our split of 
the dataset produced a test sample that allowed us to estimate the c- 
statistic for 7-day and 30-day mortality with standard errors of 
approximately 0.027 and 0.014, respectively. Using one-third of the 
dataset as a test sample for validation allowed us to estimate the cali-
bration intercept with standard errors of 0.115 at 7 days and 0.061 at 30 
days. Similarly, we could estimate calibration slope with standard errors 
of 0.123 and 0.067 at 7 and 30 days, respectively. We employed 
hyperparameter tuning on the validation sample using Bayesian opti-
mization [26]. Model performance was assessed in the test sample using 
the c-statistic, calibration-in-the-large, calibration slope, and calibration 
plots. Calibration plots were constructed by obtaining model-predicted 
probabilities for each patient, stratifying patients into deciles based on 
predicted probability, and plotting mean predicted probabilities versus 
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observed death rates. When working with neural networks, we 
employed random oversampling from the Imbalanced-Learn library to 
achieve a more balanced class distribution [27], because it has been 
shown that neural networks can perform poorly when dealing with class 
imbalances [28]. 

We used SHAP [29], a method that provides a measure of variable 
importance, to determine which features the top performing models 
found to be the most informative. We iteratively added informative 
features to the original EHMRG covariates and retained features that 
improved the AUC ≥ 0.005 in the validation set to construct an 
‘Enhanced EHMRG’ logistic model comprised of the final set of such 
features. 

As these analyses were conducted at ICES, the use of these data was 

authorized under section 45 of Ontario’s Personal Health Information 
Protection Act, which does not require review by a Research Ethics 
Board. Original chart review and data collection were performed with 
REB approval as previously described [6]. Analyses were performed 
using Python 3.7.4, Scikit-Learn 0.22.2.post1 [30], Pandas 0.25.0, 
Numpy 1.16.4, Shap 0.35.0, Matplotlib 3.1.3, and Imblearn 0.5.0. 

3. Results 

There were 12,608 patient records divided into training, validation 
and test sets (Fig. 1). Baseline characteristics are provided in Supple-
mentary table 2. There were 244 deaths at 7 days and 761 deaths at 30 
days overall. The number of 7-day deaths in the training, validation, and 
test sets were 125 (1.85%), 26 (1.54%), and 93 (2.23%) respectively. 
There were 400 (5.92%), 96 (5.68%) and 265 (6.37%) deaths at 30 days 
in the training, validation, and test sets, respectively. AUCs for the 
EHMRG 7- and 30-day models in the test sample were 0.794 (95% CI; 
0.789, 0.800) and 0.755 (95% CI; 0.750, 0.762), respectively (Table 1). 

Comparative performance of ML models. For 7-day and 30-day 
mortality, predictors derived from machine learning models were 
ranked according to variable importance using the lasso (Supplementary 
figs. 1 and 2), neural network (Supplementary figs. 3 and 4), random 
forest (Supplementary figs. 5 and 6), and XGBoost (Supplementary figs. 
7 and 8). The list of variable names is described fully in Supplementary 
table 3. For 7-day mortality, the Lasso regression performed better than 
the other ML models but did not outperform the EHMRG 7-day model. 
For 30-day mortality, the AUC was higher for XGBoost than the other 
models, but it was not significantly different from the EHMRG 30-day 
model. Compared to the EHMRG 7-day model, ΔAUC was lower for 
the 7-day random forest (ΔAUC -0.057; 95% CI, − 0.096, − 0.017), and 
the 7-day XGBoost (ΔAUC -0.037; 95% CI, − 0.073, − 0.001). Compared 
to the EHMRG 30-day model, ΔAUC was substantially lower with the 30- 
day neural network (ΔAUC -0.075; 95% CI, − 0.105, − 0.045). Other ML 
models did not differ from EHMRG (Table 1). 

Identifying new predictors of mortality using ML. For 7-day mor-
tality, the only feature that increased the AUC by >0.005 compared to 
the EHMRG model was the time between the patient’s earliest non- 
cardiovascular-related admission within the past two years and the 
index arrival date. This variable was the only one of 10 prior hospital 

Fig. 1. Flow diagram.  

Table 1 
Machine learning and conventional statistical model comparison for prediction 
of 7- and 30-day mortality based on AUC (95%CI), and Δ AUC (95%CI).  

Model type 7-day AUC Δ AUC vs 
EHMRG 7 

30-day AUC Δ AUC vs 
EHMRG 30 

EHMRG 0.794 
(0.789, 
0.800) 

– 0.755 
(0.750, 
0.762) 

– 

Lasso 0.774 
(0.743, 
0.806) 

− 0.020 
(− 0.051, 
0.012) 

0.743 
(0.725, 
0.762) 

− 0.012 
(− 0.030, 
0.007) 

Neural 
Network 

0.669 
(0.613, 
0.728) 

− 0.120 
(− 0.181, 
− 0.066) 

0.680 
(0.650, 
0.710) 

− 0.075 
(− 0.105, 
− 0.045) 

Random 
Forest 

0.737 
(0.698, 
0.777) 

− 0.057 
(− 0.096, 
− 0.017) 

0.747 
(0.728, 
0.767) 

− 0.008 
(− 0.027, 
0.012) 

XGBoost 0.757 
(0.721, 
0.793) 

− 0.037 
(− 0.073, 
− 0.001) 

0.759 
(0.740, 
0.779) 

0.004 (− 0.015, 
0.024) 

Enhanced 
EHMRG 

0.793 
(0.789, 
0.797) 

− 0.001 
(− 0.005, 
0.003) 

0.760 
(0.756, 
0.769) 

0.005 (− 0.004, 
0.014) 

AUC - area under the curve. 
CI - confidence interval. 
EHMRG - Emergency Heart failure Mortality Risk Grade risk prediction at 7 days 
or 30 days. 
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Fig. 2. Mean predicted probability vs. observed probability for 7-day mortality, by modeling approach.  
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admission or ED visit variables that were included to supplement the ML 
model, indicating that there was limited discriminative ability of prior 
hospitalizations to predict acute HF mortality. For 30-day mortality, 
sodium concentration and long-term care residence status improved 
AUC marginally when added to the original EHMRG 30-day model. 
However, when the above variables were included in the enhanced 7- 
and 30-day models, there was no significant improvement in AUC 
compared to the base EHMRG models as shown in Table 1. 

Calibration and Brier Score. As shown in the decile plots for 7-day 
mortality (Fig. 2), calibration was poor for neural networks when pre-
dicted risk was high and was poor for the random forest even at inter-
mediate predicted risk. From calibration plots, the 7-day EHMRG and 
the remaining ML models for 7-day death were well calibrated (Fig. 2). 
For 30-day mortality, all approaches except neural networks were well- 
calibrated (Supplementary fig. 9). For 7-day prediction, EHMRG had the 
best calibration as demonstrated by both calibration-in-the-large being 
closest to zero and calibration slope being closest to one (Table 2). The 
next best model at 7 days was the logistic regression based enhanced 
EHMRG which used machine learning to identify new predictors and 
logistic regression to model mortality. EHMRG and enhanced EHMRG 
also had the best Brier Scores for 7-day mortality. For 30-day mortality, 
XGBoost had the best calibration slope, however, the calibration inter-
cept was poor. EHMRG and the enhanced EHMRG had the best 
calibration-in-the-large (since calibration intercept was closest to zero) 
and the next highest calibration slope after XGBoost. For 30-day pre-
diction, EHMRG, enhanced EHMRG, and the lasso had the best Brier 
Scores. Neural networks had the worst Brier Scores for both outcomes. 

4. Discussion 

We found that ML algorithms demonstrated comparable discrimi-
nation to the logistic regression-based EHMRG 7- and 30-day mortality 
models, although there was variability in performance of the different 
ML-based models. Neural networks had consistently lower discrimina-
tive ability and substantial miscalibration for predicting mortality. 
Despite considering over 100 variables, including medications prior to 
hospital arrival, using ML to identify new covariates to enhance the 
logistic regression models did not tend to improve AUC. We also found 
that comparing models using calibration provided insights into the 
optimal model. Using calibration indices, EHMRG was optimal for 7-day 
outcomes. For 30-day outcomes, the findings were more nuanced, with 
XGBoost demonstrating the best calibration slope but poor calibration 
intercept. EHMRG and the enhanced EHMRG were optimal since they 
had both good calibration intercept and slope. 

Machine learning has the potential to personalize medical care by 
incorporating information and data that arise from ‘collective experi-
ence’ [31]. However, there is ongoing debate about the role of ML for 
predicting health outcomes. Some studies have reported higher AUCs 
with ML compared to CSM for complex problems such as predicting 
readmissions [32], outcomes in HF with preserved ejection fraction 

[33], and identifying incident atrial fibrillation [34]. Christodoulou 
et al. reported that ML was not superior to logistic regression-based 
clinical prediction models in 18 different medical fields [35]. In our 
recently-published systematic review of ML algorithms vs. CSM for 
prediction of outcomes after acute myocardial infarction, we identified 
several potential sources of bias in prior comparative studies [14]. With 
respect to the number of events per variable (EPV), a simulation study 
found that logistic regression models are optimal when the number of 
EPV exceeds a 10:1 ratio [36], whereas no such convention exists for 
machine learning. Research by van der Ploeg et al. showed that ML 
methods may require a larger sample size than CSM in order to have 
optimism below a given threshold [37]. Consequently in smaller sample 
sizes, ML methods may result in more optimistic estimates of perfor-
mance than CSM. Thus, there is still equipoise and need for more 
rigorously-conducted studies comparing ML and CSM for prognosis- 
based research. 

Our study adds to existing knowledge by demonstrating that vali-
dated conventional statistical models, despite greater parsimony, may 
be superior to more complex approaches that use ML. While ML models 
have unique strengths, our current study suggests that they should be 
compared with CSM, such as multiple logistic regression or Cox models 
whenever possible since a simpler approach with greater interpretability 
is preferred. Unless a comparison is performed, it cannot be easily pre-
dicted whether machine learning will be better than or inferior to con-
ventional statistical models. Second, while many prior studies examined 
only the AUC when comparing ML vs. CSM [13,14], our current study 
demonstrates that examining calibration provides added benefits when 
trying to ascertain the value of ML algorithms. In a previously-published 
systematic review of ML vs. CSM in acute heart failure, all 20 studies 
reported AUCs but only two studies overall (and none utilizing neural 
networks) reported on calibration [13]. A similar lack of reporting of 
calibration of ML approaches was found in another systematic review of 
24 studies of acute myocardial infarction [14]. Our study suggests that 
calibration should be routinely reported when machine learning is used 
for prediction. To this end, the Brier score (a measure of overall pre-
dictive accuracy) and measures of calibration (e.g., calibration intercept 
and slope) should be reported when assessing the performance of ML 
methods. Simply reporting the c-statistic is insufficient. 

In conclusion, logistic regression-based mortality prediction in acute 
HF performed comparably to ML models. However, ML approaches may 
result in predictions that display poor calibration. Newly developed ML 
models for prognosis should be routinely compared with validated risk 
models for their discrimination and calibration. 
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